# Specify how results are going to be saved
# Define hyperpipe
hyperpipe = Hyperpipe('None',
project_folder = './results',
optimizer="random_grid_search",
optimizer_params={'n_configurations': 30},
metrics=['mean_squared_error', 'mean_absolute_error', 'explained_variance'],
best_config_metric="mean_absolute_error",
outer_cv = KFold(n_splits=5,shuffle=True),
inner_cv = KFold(n_splits=3, shuffle=True),
verbosity=2)
# Add neuro elements
neuro_branch = NeuroBranch('Neuro', nr_of_processes=3)
neuro_branch += PipelineElement('BrainAtlas', hyperparameters={}, atlas_name='HarvardOxford_Cortical_Threshold_25',
rois=['all'], extract_mode='vec', batch_size=50)
hyperpipe += neuro_branch
# Add transformer elements
hyperpipe += PipelineElement("PCA", hyperparameters={},
test_disabled=False, n_components=0.8)
hyperpipe += PipelineElement("SVR", hyperparameters={}, C=1, gamma='scale', max_iter=1000000.0, kernel='linear', epsilon=0.1)