# Specify how results are going to be saved
# Define hyperpipe
hyperpipe = Hyperpipe('None',
project_folder = './results',
optimizer="random_grid_search",
optimizer_params={'n_configurations': 30},
metrics=['accuracy', 'balanced_accuracy', 'specificity', 'sensitivity'],
best_config_metric="balanced_accuracy",
outer_cv = KFold(n_splits=5,shuffle=True),
inner_cv = KFold(n_splits=3, shuffle=True),
verbosity=2)
# Add neuro elements
neuro_branch = NeuroBranch('Neuro', nr_of_processes=3)
neuro_branch += PipelineElement('BrainAtlas', hyperparameters={}, atlas_name='HarvardOxford_Cortical_Threshold_25',
rois=['all'], extract_mode='vec', batch_size=50)
hyperpipe += neuro_branch
# Add transformer elements
preprocessing_pipe = Preprocessing()
hyperpipe += preprocessing_pipe
preprocessing_pipe += PipelineElement("LabelEncoder")
hyperpipe += PipelineElement("PCA", hyperparameters={'n_components': FloatRange(0.2, 0.99)},
test_disabled=False)
hyperpipe += PipelineElement("SVC", hyperparameters={'C': FloatRange(1e-7, 1e7, range_type="geomspace"), 'kernel': ['linear', 'rbf']}, gamma='scale', max_iter=1000000.0)